环境声事件检测应用具有重要的它具有现实意义,例如通过检测公共场所的异常声音来监测公共场所的安全,通过检测野生动物的声音来监测野生动物的活动区域或生活状况,以及实时检测设备的运行声音。监控设备运行状态等。 目前在环境声音事件检测领域有两种声音检测方案,一种叫异响检测,另一种叫异响识别。所谓异响检测就是检测是否有异响,但无法确定是哪种异响;异音识别就是对异音进行分类,从而知道检测到什么样的异音,达到识别诊断的目的。 异常声音检测的一般方法是对背景环境声音进行建模,与模型不匹配的都是异常声音;而异音识别则是对异音进行建模,凡是符合模型的都是某种异音。声音。这两种方法的原理其实来自于声音识别,本质上就是训练一个分类器。声音识别的关键是分类器的判别,即模型的准确性,它由选择的声学特征和声音模型决定。
声源定位技术的应用 声音,尤其是噪音和异常噪音,往往意味着产品不合格、有故障,或者环境突然或意外。要解决这些质量、故障、事故等问题,首先要进行噪声检测,通过噪声源定位技术确定这些问题的位置和方向。声源定位在军工、工业、航空航天、智能制造等诸多行业都有应用需求。 例如:在目前的工业制造中,我们发现大部分机械设备在正常工作状态下都会发出稳定而有规律的噪音,但当设备老化或出现其他故障时,就会产生明显的差异。由于正常的工作噪音,这为“以设备的运行声音判断设备的健康状况”提供了先天的有利条件。声音信号包含丰富的信息,在很多视觉、触觉和嗅觉不适用的场景中具有独特的优势。与此同时,声音信号为非接触式,可有效避免振动信号数据采集困难。 在国防现代化方面,声源定位技术可以用来测量地面作战的炮兵阵地;它可以用来寻找隐藏在某个地方的狙击手的位置,也可以用来测量弹药测试火炮和空中轰炸的影响。观点。随着隐身技术的飞速发展,原本用于军用坦克和直升机的传统探测技术已经失去了作用。在这种情况下,被动声源检测技术将发挥巨大优势。
噪声源识别方法大致可分为两类: 第一类是常规声学测量分析方法,包括分离作业法、分离覆盖法、近场测量法、地表速度测量法等。 第二类是声信号处理方法,它是在现代信号分析理论的基础上发展起来的,如声强法、面强法、谱分析、倒谱分析、互相关和互谱分析、相干分析等。到这一类方法。 在不同的研究阶段,可以根据声源的复杂程度和研究工作的需要,选择不同的识别方法或多种方法组合使用。