生物质压块煤的原料来自于可再生能源,地球储量大,来源广,易加工,且具有可再生属性,目前已经实现了长期化、规模化、产业化利用。在已知的可再生能源中,生物质压块煤为代表的可再生能源是唯一可以循环利用的新能源,可实现可持续发展利用。随着生物质压块煤生产制造技术的推广应用,有助于缓解能源短缺,保护大气环境,促进新农村建设,改善农村环境,对社会经济效益明显。
煤灰熔融性测定(灰溶点测定仪) 在规定条件下得到的随加热温度而变化的煤灰熔融性变形温度(DT )、软化温度( ST )、流动温度(FT ) ,常用软化温度(ST )来表示。灰熔融性温度越高,煤灰不容易结渣。因锅炉设计不同,对灰熔融性温度要求也不一样。煤灰熔融性温度的高低,直接关系到煤作为燃料和气化原料时的性能,煤灰熔融性温度低,煤灰容易结渣,增加了排渣的难度,尤其是固态排渣的锅炉和移动床的气化炉,煤灰熔融性温度要求较高。由于煤粉炉炉膛火焰中心温度多在1500℃以上,在这样高温下,煤灰大多呈软化或流体状态。
煤炭热分解以后剩余物质的形状。根据不同形状分为8 个序号,其序号即为焦渣特征代号。 1──粉状。全部是粉末,没有相互粘着的颗粒. 2──粘着。用手指轻碰即为粉末或基本上是粉末,其中较大的团块轻轻一碰即成粉末。 3──弱粘性。用手指轻压即成不块。 4 ──不熔融粘结。用手指用力压才裂成小块,焦渣上表面无光泽,下表面稍有银白色光泽. 5 ──不膨胀熔融枯结。焦渣形成扁平的块,煤粒的界限不易分清.焦渣上表面有明显的银白色金属光泽,下表面银白色光泽更明显。 6──微膨胀熔融粘结。用手指压不碎,焦渣的上、下表面均有银白色金属光泽,但焦渣表面具有较小的膨胀泡. 7──膨胀熔融粘结。焦渣的上、下表面均有银白色金属光泽,明显膨胀,但高度不超过15mm。 8──强膨胀熔融粘结。焦渣的上、下表面有银白色金属光泽,焦渣高度大于15mm