由于不同种类的燃料,其燃烧火焰辐射的光线强度不同,相应采用的火焰检测元件也会不一样。一般说来,煤粉火焰中除了含有不发光的CO2 和水蒸气等三原子气体外,还有部分灼热发光的焦炭粒子和炭粒,它们辐射较强的红外线、可见光和一些紫外线,而紫外线往往容易被燃烧产物和灰粒吸收而很快被减弱,因此煤粉燃烧火焰宜采用可见光或红外线火焰检测器。而在用于暖炉和点火用的油火焰中,除了有一部分CO2 和水蒸气外,还有大量的发光碳黑粒子,它也能辐射较强的可见光、红外线和紫外线,因此可采用对这三种火焰较敏感的检测元件进行测量。而可燃气体作为主燃料燃烧时,在火焰初始燃烧区辐射较强的紫外线,此时可采用紫外线火焰检测器进行检测。 除辐射稳态电磁波外,所有的火焰均呈脉动变化。因此,单燃烧器工业锅炉的火焰监视可以利用火焰脉动变化特性,采用带低通滤波器(10—20Hz)的红外固体检测器(通常采用硫化铅)。但电站锅炉多燃烧器炉膛火焰的闪烁规律与单燃烧器工业锅炉不大一样,特别是在燃烧器的喉口部分,闪烁频率的范围要宽得多。
在低频范围(10—20Hz),煤粉与油有火与无火之间闪烁强度的差异都很小;煤粉有火与无火之间辐射强度最大差异处的闪烁频率约300Hz,油有火与无火之间区别都要在较高的频率(100Hz 以上)才能较好地实现检测。 闪烁频率与辐射强度之间的关系取决于燃烧器结构布置、检测方法、燃料种类、燃烧器的运行条件(如燃料与空气比、一次风速)、以及观察角度等因素。一般来说: 1) 火焰闪烁频率在火焰的初始燃烧器较高,然后向燃烬区依次降低, 2) 检测器距火焰初始燃烧区越近,检测到的高频成分(100—400Hz)越强; 3) 检测器探头视角越狭窄,所检测到的火焰信号越真实;反之亦然。 可以推断,全炉膛监视的闪烁频率要比单只燃烧器监视的频率低得多。
燃烧器火焰的形状,我们人为地将其分为四部分:从喉口开始依次为黑龙区、初始燃烧区、燃烧区和燃烬区。 从一次风口喷射出的第一段是一股暗黑色的煤粉和一次风的混合物流,我们称其为黑龙区,其辐射强度和闪烁频率都很低; 第二段是初始燃烧区,煤粉因受到高温炉气和火焰回流的加热开始燃烧,大量煤粉颗粒爆燃形成亮点流,此段的特点是这部分煤粉燃烧亮度不是很大,但其闪烁频率却达到最大值,往往可以在100Hz 以上; 第三段为燃烧区,也称完全燃烧区,各个煤粉颗粒在与二次风的充分混合下完全燃烧,产生出很大热量,此段的火焰亮度最高且最稳定,但闪烁频率要低于初始燃烧区; 第四段为燃烬区,这时的煤粉绝大部分燃烧完毕形成飞灰,少数较大的颗粒继续进行燃烧,最后形成高温炉气流,其火焰亮度和闪烁频率都比较低。有一点需要说明,上面提到的频率是指闪烁(Flicker)频率,它和有些火焰检测器中的脉冲(Pulse)频率有本质区别,前者是燃料混合物火焰燃烧所特有的属性,而后者只是对火焰强度的一种显示方法。