紫外线式火焰检测器和探头: 探头与处理器间信号的传输采取电流传输方式,以提高抗干扰能力,并通过两芯/三芯电缆传至处理器。处理器将由探头传来的信号通过匹配电路触发电路进行处理后,进行有、无火判别,并给出相应指示及输出。隧道火焰探测综合盘本探测器能够对日光、闪电、电焊、人工光源、热辐射、电磁干扰、机械振动等干扰有很好的,从而实现了对火警信号的快速响应和准确识别。本探测器采用非接触式探测,灵敏度现场可调,提供无源接点和标准电流输出与火灾报警系统相连接。
在低频范围(10—20Hz),煤粉与油有火与无火之间闪烁强度的差异都很小;煤粉有火与无火之间辐射强度最大差异处的闪烁频率约300Hz,油有火与无火之间区别都要在较高的频率(100Hz 以上)才能较好地实现检测。 闪烁频率与辐射强度之间的关系取决于燃烧器结构布置、检测方法、燃料种类、燃烧器的运行条件(如燃料与空气比、一次风速)、以及观察角度等因素。一般来说: 1) 火焰闪烁频率在火焰的初始燃烧器较高,然后向燃烬区依次降低, 2) 检测器距火焰初始燃烧区越近,检测到的高频成分(100—400Hz)越强; 3) 检测器探头视角越狭窄,所检测到的火焰信号越真实;反之亦然。 可以推断,全炉膛监视的闪烁频率要比单只燃烧器监视的频率低得多。
燃烧器火焰的形状,我们人为地将其分为四部分:从喉口开始依次为黑龙区、初始燃烧区、燃烧区和燃烬区。 从一次风口喷射出的第一段是一股暗黑色的煤粉和一次风的混合物流,我们称其为黑龙区,其辐射强度和闪烁频率都很低; 第二段是初始燃烧区,煤粉因受到高温炉气和火焰回流的加热开始燃烧,大量煤粉颗粒爆燃形成亮点流,此段的特点是这部分煤粉燃烧亮度不是很大,但其闪烁频率却达到最大值,往往可以在100Hz 以上; 第三段为燃烧区,也称完全燃烧区,各个煤粉颗粒在与二次风的充分混合下完全燃烧,产生出很大热量,此段的火焰亮度最高且最稳定,但闪烁频率要低于初始燃烧区; 第四段为燃烬区,这时的煤粉绝大部分燃烧完毕形成飞灰,少数较大的颗粒继续进行燃烧,最后形成高温炉气流,其火焰亮度和闪烁频率都比较低。有一点需要说明,上面提到的频率是指闪烁(Flicker)频率,它和有些火焰检测器中的脉冲(Pulse)频率有本质区别,前者是燃料混合物火焰燃烧所特有的属性,而后者只是对火焰强度的一种显示方法。