红外光谱仪工作原理就是用一定频率的红外光聚焦照射被分析的样品时,如果分子中某个基团的振动频率与照射红外线频率相同便会产生共振,从而吸收一定频率的红外线,把分子吸收红外线的这种情况用仪器记录下来,便能得到很好的反映样品成分特征的光谱,进而推测化合物的类型和结构。 20世纪70年代出现的傅里叶变换红外光谱仪是一种非色散型的第三代红外吸收光谱仪,其光学系统的主体是迈克耳孙(Michelson)干涉仪。迈克耳孙干涉仪主要由两个互成90度的平面镜(动镜和定镜)和一个分束器组成。固定定镜、可调动镜和分束器组成了傅里叶变换红外光谱仪的核心部件—迈克耳孙干涉仪。动镜在平稳移动中要时时与定镜保持90度。分束器具有半透明性质,位于动镜与定镜之间并和它们呈45度放置。
光谱仪有多种类型,除在可见光波段使用的光谱仪外,还有红外光谱仪和紫外光谱仪。按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉光谱仪等。按探测方法分,有直接用眼观察的分光镜,用感光片记录的摄谱仪,以及用光电或热电元件探测光谱的分光光度计等。单色仪是通过狭缝只输出单色谱线的光谱仪器,常与其他分析仪器配合使用。 光谱仪有多种类型,除在可见光波段使用的光谱仪外,还有红外光谱仪和紫外光谱仪。按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉光谱仪等。按探测方法分,有直接用眼观察的分光镜,用感光片记录的摄谱仪,以及用光电或热电元件探测光谱的分光光度计等。单色仪是通过狭缝只输出单色谱线的光谱仪器,常与其他分析仪器配合使用。
光谱仪的原理—— 根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪.经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器.调制光谱仪是非空间分光的,它采用圆孔进光. 根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪.光学多道分析仪OMA (Optical Multi-channel Analyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理, 存储诸功能于一体.