环境声事件检测领域还存在很多问题,往往导致在实际场景中的应用不尽如人意。具体问题总结如下: 1、流行声学特征+机器学习环境声事件识别方法在实际场景中表现不佳,信噪比低。例如,在高信噪比下,目标声音事件的召回率高,但准确率低(背景噪声容易识别为目标声音事件)。 );在较低的信噪比下,识别效果普遍较差。 2、语音识别领域缺乏端点检测技术来降低背景噪声对识别的影响。 3. 缺乏大量的环境声数据集来支持环境声事件识别领域的研究。 4、环境声降噪技术研究不足。 在这里,希望通过前辈们的知识积累和后辈们的不断研究,尽快克服困难。
环境声事件检测应用具有重要的它具有现实意义,例如通过检测公共场所的异常声音来监测公共场所的安全,通过检测野生动物的声音来监测野生动物的活动区域或生活状况,以及实时检测设备的运行声音。监控设备运行状态等。 目前在环境声音事件检测领域有两种声音检测方案,一种叫异响检测,另一种叫异响识别。所谓异响检测就是检测是否有异响,但无法确定是哪种异响;异音识别就是对异音进行分类,从而知道检测到什么样的异音,达到识别诊断的目的。 异常声音检测的一般方法是对背景环境声音进行建模,与模型不匹配的都是异常声音;而异音识别则是对异音进行建模,凡是符合模型的都是某种异音。声音。这两种方法的原理其实来自于声音识别,本质上就是训练一个分类器。声音识别的关键是分类器的判别,即模型的准确性,它由选择的声学特征和声音模型决定。
噪声源识别方法大致可分为两类: 第一类是常规声学测量分析方法,包括分离作业法、分离覆盖法、近场测量法、地表速度测量法等。 第二类是声信号处理方法,它是在现代信号分析理论的基础上发展起来的,如声强法、面强法、谱分析、倒谱分析、互相关和互谱分析、相干分析等。到这一类方法。 在不同的研究阶段,可以根据声源的复杂程度和研究工作的需要,选择不同的识别方法或多种方法组合使用。